Concentrated Bone Marrow Aspirate Improves Full-Thickness Cartilage Repair Compared with Microfracture in the Equine Model

By Lisa A. Fortier, DVM, PhD, Hollis G. Potter, MD, Ellen J. Rickey, DVM, Lauren V. Schnabel, DVM, Li Foong Foo, MD, Leroy R. Chong, MD, Tracy Stokol, BVSc, PhD, Jon Cheetham, VetMB, PhD, and Alan J. Nixon, BVSc, MS

Investigation performed at Cornell University College of Veterinary Medicine, Ithaca, and the Hospital for Special Surgery, New York, NY

Background: The purpose of this study was to compare the outcomes of treatment with bone marrow aspirate concentrate, a simple, one-step, autogenous, and arthroscopically applicable method, with the outcomes of microfracture with regard to the repair of full-thickness cartilage defects in an equine model.

Methods: Extensive (15-mm-diameter) full-thickness cartilage defects were created on the lateral trochlear ridge of the femur in twelve horses. Bone marrow was aspirated from the sternum and centrifuged to generate the bone marrow concentrate. The defects were treated with bone marrow concentrate and microfracture or with microfracture alone. Second-look arthroscopy was performed at three months, and the horses were killed at eight months. Repair was assessed with use of macroscopic and histological scoring systems as well as with quantitative magnetic resonance imaging.

Results: No adverse reactions due to the microfracture or the bone marrow concentrate were observed. At eight months, macroscopic scores (mean and standard error of the mean, 9.4 ± 1.2 compared with 4.4 ± 1.2; p = 0.009) and histological scores (11.1 ± 1.6 compared with 6.4 ± 1.2; p = 0.02) indicated improvement in the repair tissue in the bone marrow concentrate group compared with that in the microfracture group. All scoring systems and magnetic resonance imaging data indicated that delivery of the bone marrow concentrate resulted in increased fill of the defects and improved integration of repair tissue into surrounding normal cartilage. In addition, there was greater type-II collagen content and improved orientation of the collagen as well as significantly more glycosaminoglycan in the bone marrow concentrate-treated defects than in the microfracture-treated defects.

Conclusions: Delivery of bone marrow concentrate can result in healing of acute full-thickness cartilage defects that is superior to that after microfracture alone in an equine model.

Clinical Relevance: Delivery of bone marrow concentrate to cartilage defects has the clinical potential to improve cartilage healing, providing a simple, cost-effective, arthroscopically applicable, and clinically effective approach for cartilage repair.

Objective chondral or osteochondral defects have been identified in 61% to 67% of knee arthroscopy procedures1,2. Several operative procedures have been used to enhance cartilage repair in an attempt to diminish knee pain, restore joint function, and delay the development of osteoarthritis. Techniques ranging from debridement and/or microfracture to methods including implantation of synthetic materials or scaffolds with or without cells have been developed and used for cartilage repair3. The authors of a systematic review of Level-I and II studies involving 421 patients treated with autologous chondrocyte implantation, osteochondral autograft transfer, matrix-induced autologous chondrocyte implantation, or microfracture, and followed for a mean of 1.7 years, concluded that no technique consistently yielded superior results and that all studies showed improvement in clinical outcome measures in all treatment groups as compared with the preoperative findings4.

Disclosure: In support of their research for or preparation of this work, one or more of the authors received, in any one year, outside funding or grants in excess of $10,000 from the Grayson-Jockey Club Research Foundation. Neither they nor a member of their immediate families received payments or other benefits or a commitment or agreement to provide such benefits from a commercial entity.
Although these techniques present options to the surgeon, the development of a single-step, simple, autogenous, cost-effective cartilage repair procedure would be ideal. Furthermore, an optimal procedure would be one that could be applied arthroscopically to minimize morbidity and that could provide cells for chondrogenesis, growth factors to enhance matrix synthesis, and a scaffold to retain the cells within the defect and protect the neocartilaginous tissue. Microfracture fits many of these criteria and is effective at relieving pain in the short term (for less than twenty-four months). However, the repair tissue lacks normal cartilage matrix structure, and the long-term durability of the repair tissue has been called into question.

The goal of this study was to determine the capacity of a concentrated bone marrow aspirate to achieve repair of large, full-thickness cartilage defects. Our hypothesis was that bone marrow concentrate would enhance cartilage repair compared with that following microfracture.

Bone marrow aspirate has been investigated as a source of mesenchymal stem cells for regeneration of cartilage and other tissues of the musculoskeletal system. In bone marrow aspirates, mesenchymal stem cells represent a very small fraction of the total population of nucleated cells. Studies suggest that 0.001% to 0.01% of mononuclear cells, after density gradient centrifugation of the bone marrow aspirate to remove red blood cells, granulocytes, immature myeloid precursors, and platelets, are mesenchymal stem cells. The number of mesenchymal stem cells can be increased through culture expansion, but then the technique is no longer a simple, one-step method of tissue regeneration.

Bone marrow aspirate is also a rich source of growth factors, including platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β), and vascular endothelial growth factor (VEGF). These growth factors are contained within the alpha-granules of platelets and are secreted by mesenchymal stem cells. The chondrogenic effects of these growth factors on mesenchymal stem cells have been investigated, and studies have suggested that combinations of growth factors are important for inducing effective chondrogenesis.

The importance of a three-dimensional environment to facilitate mesenchymal stem-cell chondrogenesis is well documented. The use of either platelet-rich plasma or fibrin clots as biologically based three-dimensional scaffolds enhances mesenchymal stem-cell chondrogenesis in vitro compared with that observed in traditional three-dimensional pellet culture systems. Both platelet-rich plasma and fibrin clots are typically generated with use of peripheral blood plasma and thrombin-mediated cleavage of fibrinogen to fibrin, and the same biological mechanism can be utilized to clot bone marrow concentrate and generate three-dimensional constructs in situ.

The objective of this study was to evaluate treatment with bone marrow concentrate as a method to repair large full-thickness cartilage defects. Our hypothesis was that bone marrow concentrate with microfracture would significantly improve the quality and quantity of repair tissue compared with that achieved with microfracture alone.

Materials and Methods

Experimental Design and Study Population

This project was approved and performed according to guidelines of the Institutional Animal Care and Use Committee. Twelve mixed-breed, young adult horses (two to five years of age; mean body weight, 425 kg) were used. The animals were considered to be free of patellofemoral joint abnormalities on the basis of physical examination, lameness examination, and patellofemoral radiographs. Prior to surgery, computer-generated assignments were used to designate whether the left or right limb of each horse was to receive bone marrow concentrate and microfracture or microfracture alone.

Surgical Procedures

Preoperative and postoperative antibiotics and a nonsteroidal anti-inflammatory agent were administered. Caudal epidural analgesia was also administered preoperatively to minimize postoperative pain. The horses were anesthetized and placed in dorsal recumbency, and 70 mL of bone marrow was aspirated from the sternum prior to the initiation of arthroscopic surgery. The bone marrow was aspirated from two sternal marrow spaces (with 35 mL aspirated from each) into syringes containing preservative-free heparin to a final concentration of 15 U of preservative-free heparin/mL of bone marrow aspirate. The contents of the two syringes were mixed together to obtain one homogeneous sample of bone marrow aspirate, and an aliquot was removed for cytological analyses and flow cytometry. The bone marrow aspirate (60 mL) was placed into a bone marrow aspirate concentrate (BMAC) disposable (Harvest Technologies, Plymouth, Massachusetts) and processed in a SmartPreP 2 centrifuge (Harvest Technologies) to yield 6 mL of bone marrow concentrate. One milliliter was retained for cytological analyses and flow cytometry, and the remainder was reserved for surgical application.

An arthroscope was then inserted sequentially into each patellofemoral joint. The articulations were explored to rule out any preexisting cartilage lesions. A 1.5-mm-diameter custom-made guarded spade-bit cutter, premeasured to drill 3 mm deep, was introduced into the joint through a second portal and used to create a single full-thickness cartilage defect in the lateral trochlear ridge of each femur approximately 2 cm distal to the apex of the patella. Any remaining calcified cartilage was removed with a surgical curet. The fluid medium used for initial arthroscopic maneuvers was replaced by sterile helium gas, and the subchondral bed of the cartilage lesion was dried by suction and insertion of several lint-free sponges. An awl was used to create six microfracture sites, placed approximately 6 mm apart. For the defects to be treated with the bone marrow concentrate, bone marrow concentrate and thrombin (10:1 volume ratio) were mixed on injection into the defect with use of a mixing syringe and injected until the bone marrow concentrate was flush with the surrounding host cartilage. The thrombin was resuspended in, and activated with, 10% CaCl₂ to achieve a final concentration of 1000 U/mL. The contralateral, control limb was treated with microfracture alone. The joints were irrigated with fluid to remove residual gas and
moved through a range of motion to verify that the bone marrow concentrate grafts remained positioned within the defect.

Following surgery, the horses were confined to box-stall rest for two weeks and then allowed ten minutes of walking exercise daily, which increased each week. Second-look arthroscopy was performed at twelve weeks after surgery. Repair tissue was scored with use of the International Cartilage Repair Society (ICRS) macroscopic scoring system\(^{27-29}\). No biopsies were performed. The horses were killed at eight months after the initial surgery, and the knee joints were removed for 3-T quantitative magnetic resonance imaging\(^{30-36}\) and histological analyses. The histological findings were scored with the ICRS system\(^37\).

Cytological and Flow Cytometry Analysis

All samples (bone marrow aspirate and bone marrow concentrate) for cytological analysis and flow cytometry were evaluated in a blinded fashion by a board-certified veterinary clinical pathologist (T.S.). Routine clinical cytological analysis of bone marrow aspirate and bone marrow concentrate was performed to determine the platelet count, red blood-cell count, packed red blood-cell volume, white blood-cell count, and myeloid/erythroid ratio. Fold changes in cytological categories were calculated from bone marrow aspirate and bone marrow concentrate values.

Flow cytometry was performed on the samples of bone marrow aspirate and bone marrow concentrate, but only the results from the samples of bone marrow concentrate were available as a result of the low number of nucleated cells in the bone marrow aspirate. Flow cytometry was performed, as previously described, with a FACSCalibur flow cytometer (BD Biosciences, San Jose, California) equipped with a 488-μm argon laser and BD CellQuest analysis software (BD Biosciences, San Jose, California) equipped with a 488-μm argon laser and BD CellQuest analysis software (BD Biosciences, San Jose, California). Cells were assessed for immunoreaction against antibodies to CD45 (VMRD, Pullman, Washington), CD44 (AbD Serotech, Raleigh, North Carolina), CD29 (BD Biosciences, San Jose, California), CD34 (BD Biosciences), and CD172a (AbD Serotech). These markers were chosen on the basis of the previous literature, which suggests that mesenchymal stem cells are negative for CD45 and CD34 and positive for CD29, CD44, and CD172a\(^{38-40}\).

Imaging

Magnetic resonance imaging of the patellofemoral joint was conducted on a 3-T clinical system (GE Healthcare, Milwaukee, Wisconsin) with use of an eight-channel knee coil (Invivo, Orlando, Florida). Morphological imaging was performed with use of cartilage-sensitive fast-spin-echo sequences in sagittal and axial planes through the trochlea with the following parameters: repetition time = 3500 to 6000 msec, echo time = 25 to 35 msec, echo train length = twelve to thirteen, at three excitations with a maximum resolution of 253 μm × 253 μm × 1.5 mm. Receiver bandwidth was 62.5 kHz over the entire frequency range. The morphological pulse sequence has been used previously in preclinical models and has been assessed for accuracy with use of histological findings as the standard\(^{32,41}\).

\(^{32,41}\) T1\(\rho\)-weighted images were acquired with use of a spin-lock technique and three-dimensional spoiled gradient-recalled (3D SPGR) acquisition, with use of a magnetization-prepared, angle-modulated, partitioned k-space snapshot technique\(^42\). T2 mapping was performed with use of a multislice, multiecho modified Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, which utilizes interleaved slices and tailored refocusing pulses to minimize contribution from stimulated echoes\(^43\). Both quantitative pulse sequences were performed in the axial plane, with use of a multislice, multiecho technique, with a repetition time of 800 msec and eight echoes sampled (8 to 64 msec). Quantitative T1\(\rho\) mapping was performed with use of a repetition time of 2000 msec; a field of view of 13 cm; a slice thickness of 2.5 cm; a matrix of 4096 × 12; a time of spin-lock of 20, 40, 60, 80 msec; eight excitations; and a spin-lock frequency of 500 Hz. Standardized regions of interest for quantitative T1\(\rho\) and T2 mapping included tissue in the central part of the defect, in the peripheral part of the defect, in the interface between the defect and the surrounding host tissue, adjacent to the defect (1 cm from the periphery of the defect), and remote from the defect (medial trochlear tissue). In each region of interest, T1\(\rho\) mapping and T2 mapping were performed separately in the superficial and deep halves of the respective tissues, with care taken to not include the synovial fluid or the subchondral plate, respectively, as well as to avoid sampling at the magic angle. Fast-spin-echo acquisitions were used to determine the Outerbridge score\(^44\), the percent fill of the defect with repair tissue as determined by a review of both the coronal and the sagittal images (providing a tomographic assessment of the fill of the defect by thirds: 0% to 33%, 34% to 66%, and 67% to 100%)\(^{32}\), the presence of subchondral bone overgrowth, the extent of sclerosis, and the synovial reaction.

Gross and Histological Processing and Scoring

All scoring was performed by two independent evaluators (L.A.F. and E.J.R.), who were blinded to the treatment group. Subsequent to magnetic resonance imaging, the joints were opened and photographed. Gross specimens were assessed for immunoreaction against antibodies to CD45 (VMRD, Pullman, Washington), CD44 (AbD Serotech, Raleigh, North Carolina), CD34 (BD Biosciences, San Jose, California), CD29 (BD Biosciences), and CD172a (AbD Serotech). These markers were chosen on the basis of the previous literature, which suggests that mesenchymal stem cells are negative for CD45 and CD34 and positive for CD29, CD44, and CD172a\(^{38-40}\).
Statistical Methods
A paired t test was used to compare cytological data from the bone marrow aspirate specimens with that from the bone marrow concentrate specimens. Flow cytometry data were considered descriptive and therefore not subjected to statistical analysis. For all other outcome measures, a mixed-effect model (with horse as a random effect) was fitted to the data, including arthroscopic scores at twelve weeks postoperatively, gross and histological scores after the animal was killed, and magnetic resonance imaging data. The magnetic resonance imaging data were assessed to determine percentage fill, synovial reaction, subchondral bone reaction, and Outerbridge score. Quantitative magnetic resonance imaging datasets were analyzed with use of a linear least-squares estimation (FuncTool 3.1; GE Healthcare). T2 and T1p values were recorded from superficial and deep tissues within the five standardized regions of interest as described in the Materials and Methods section. Significance was set at \(p \leq 0.05 \).

Source of Funding
This study was funded through a grant from the Grayson-Jockey Club Research Foundation, which was used for animal costs, materials, and supplies. No authors received a financial benefit from this study.

Results
Surgical Implantation and Clinical Evaluation
The bone marrow concentrate was easily delivered to all joints to form a clot level with the surrounding host cartilage (Fig. 1). In one animal, the bone marrow concentrate clot became dislodged while the joint was moved through a range of motion after the bone marrow concentrate injection, and it was visualized arthroscopically. The clot was removed from the patellofemoral joint, the base of the defect was dried, another clot was injected, and it remained in place during a subsequent range of motion. One animal was killed immediately postoperatively because spinal cord damage sustained during recovery.

| TABLE I Results of Cytological Analysis of Bone Marrow Aspirate and Bone Marrow Concentrate |
|---|---|----------|----------------|----------------|
| Bone Marrow Aspirate* | Bone Marrow Concentrate* | Absolute Change* | Relative Change† | P Value |
| Platelet count (\(\times 10^5/\mu L \)) | 31.1 ± 21.2 | 208.3 ± 192.4 | 177 ± 183 | 8.7 (3.6-13.7) | 0.002 |
| White blood-cell count (\(\times 10^9/\mu L \)) | 36.54 ± 16.6 | 267 ± 213 | 230 ± 207 | 7.4 (4.1-10.7) | 0.0007 |
| Red blood-cell count (\(\times 10^9/\mu L \)) | 6774 ± 2060 | 3156 ± 1665 | –3617 ± 2065 | 0.52 (0.35-0.69) | <0.0001 |
| Packed red blood-cell volume (%) | 31.7 ± 5 | 17.3 ± 11.4 | –14.3 ± 12.1 | 0.55 (0.34-0.76) | 0.0004 |
| Myeloid-to-erythroid ratio | 1.84 ± 0.85 | 2.09 ± 1.46 | 0.25 ± 1.03 | 1.13 (0.78-1.47) | 0.36 |

*The values are presented as the mean and standard deviation. N = 10. † The relative change is presented as the mean with the 95% confidence interval in parentheses.

Fig. 1
Arthroscopic images of 15-mm-diameter full-thickness articular cartilage defects on the lateral trochlear ridge of the femur treated with bone marrow concentrate and microfracture (A) or with microfracture alone (B). M = medial trochlear ridge of the femur, and P = patella.
from the anesthesia had resulted in an inability to stand, and one horse was killed two months postoperatively, for humane reasons, because of a pelvic fracture that caused it pain. Second-look arthroscopy and final time-point data were available on the remaining ten horses. None of the ten remaining animals developed a joint infection or exhibited signs of lameness during the study period.

Cytological and Flow Cytometry Analyses of Bone Marrow Aspirate and Bone Marrow Concentrate

Cytological counts in the bone marrow aspirate and bone marrow concentrate are presented in Table I. The platelet count in the bone marrow concentrate was significantly increased (by 8.7-fold: 208.3 ± 192.4 [mean and standard deviation] compared with 31.1 ± 21.2 × 10^3/μL; p = 0.002) compared with that in the bone marrow aspirate. Similarly, the white blood-cell count in the bone marrow concentrate was significantly increased (by 7.4-fold: 267 ± 213 compared with 36.54 ± 16.6 × 10^3/μL; p = 0.0007) compared with that in the bone marrow aspirate. White blood-cell subpopulations were not evaluated. In contrast, the red blood-cell concentration and therefore the packed red blood-cell volume in the bone marrow concentrate were significantly decreased (by 0.5-fold: 3156 ± 1665 compared with 6774 ± 2060 × 10^3/μL; p < 0.0001) compared with that in the bone marrow aspirate. The myeloid-to-erythroid ratio, which is routinely measured in bone marrow aspirate analysis and typically used as an indicator of myeloid or erythroid dysplasia, was unchanged in the bone marrow concentrate as compared with the bone marrow aspirate and remained in the normal range (0 to 8) for horses (2.09 ± 1.46 compared with 1.84 ± 0.85; p = 0.36).

Flow cytometry was performed on both bone marrow aspirate and bone marrow concentrate, but only the results for the bone marrow concentrate were obtained because of the low numbers of nucleated cells in unprocessed bone marrow aspirate. Previous flow-cytometry studies on bone marrow aspirate have suggested that mesenchymal stem cells are contained in gate 5, which is also where monocytes are found. Other nucleated cells are typically distributed as follows: gates 1 and 4 contain large neutrophils, gate 2 includes lymphocytes, gate 3 contains macrophages, and gate 6 contains red blood cells and platelets. Of the total nucleated cells in bone marrow concentrate, the distribution into gates was as follows: gates 1 and 4, 46.3% ± 7.8%; gate 2, 18.7% ± 6.8%; gate 3, 11.2% ± 4.2%; gate 5, 13.4% ± 3.8%; and gate 6, 3.2% ± 1.3%. Within gate 5, cells displayed the accepted profile of immunoreaction to a panel of antibodies previously suggested to help to identify mesenchymal stem cells. Nucleated cells in gate 5 were negative for CD45 and CD34 and positive for CD44, CD29, and CD172a.

TABLE II Scores at Second-Look Arthroscopy at Twelve Weeks and Postmortem Macroscopic Assessments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bone Marrow Concentrate</th>
<th>Microfracture</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second-look arthroscopy</td>
<td>6.9 ± 1.3</td>
<td>3.2 ± 0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Postmortem macroscopic</td>
<td>9.4 ± 1.2</td>
<td>4.4 ± 1.2</td>
<td>0.009</td>
</tr>
</tbody>
</table>

The values are presented as the mean and standard error of the mean. N = 10.

Fig. 2

Intraoperative images obtained at second-look arthroscopy at twelve weeks after treatment of cartilage defects with microfracture and bone marrow concentrate (A) or with microfracture alone (B). The arrowheads indicate full-thickness cartilage fissures, and the asterisk indicates the proximal-medial one-fourth of the defect. M = medial trochlear ridge of the femur, and P = patella.
Second-Look Arthroscopic Assessment

Cartilage defects treated with bone marrow concentrate and microfracture had a significantly higher (better) ICRS score than those treated with microfracture alone (mean and standard error of the mean, 6.9 ± 1.3 compared with 3.2 ± 0.9; $p = 0.002$) (Fig. 2 and Table II). In addition to the variables taken into consideration in the ICRS scoring system (degree of repair, integration of the graft with the host tissue, and macroscopic appearance), the defects treated with bone marrow concentrate had no or very few (one or two) fissures radiating from their periphery, whereas the microfracture-treated defects had multiple (four, five, or six) full-thickness cartilage fissures. On the microfracture-treated sides, there was also consistently less repair tissue in the proximal-medial one-fourth of the defect (Fig. 2).

Magnetic Resonance Imaging and Macroscopic and Histological Appearance of Repair Tissue

At eight months after the surgery, the horses were killed and the patellofemoral joints were removed. The joints were subjected to magnetic resonance imaging within six to ten hours and underwent macroscopic analysis and histological sampling. On
macroscopic assessment, the defects treated with bone marrow concentrate had significantly better repair tissue than those treated with microfracture alone (mean score and standard error of the mean, 9.4 ± 1.2 compared with 4.4 ± 1.2; p = 0.009) (Table II). Treatment with bone marrow concentrate resulted in thicker, more hyaline-appearing repair tissue that visually appeared to be better integrated into the surrounding host cartilage (Fig. 3, A) compared with the repair tissue in the microfracture group (Fig. 3, B). In the microfracture-treated joints, the full-thickness fissures radiating from the periphery of the defect and the lack of fill in the proximal-medial one-fourth of the defect were still visible (Fig. 3, B).

Axial plane osteochondral sections removed for histological analysis supported the finding that the defects treated with bone marrow concentrate had a greater percentage of repair tissue fill than did the microfracture controls (Fig. 3, C and D). Magnetic resonance imaging analysis (Fig. 3, E through H) provided quantitative validation of increased fill in the defects treated with bone marrow concentrate compared with that in the microfracture-treated defects (2.3 ± 0.32 compared with 1.2 ± 0.43; p = 0.009) (Table III). Magnetic resonance images also revealed that there were no differences in the amount of synovial reaction (0.8 ± 0.21 compared with 0.9 ± 0.24; p = 0.72), subchondral sclerosis (1.5 ± 0.23 compared with 1.3 ± 0.22; p = 0.55), or Outerbridge score in cartilage adjacent to (1 cm from) the defect or remote from the defect (medial trochlear cartilage) between the bone marrow concentrate and microfracture-treated groups (Table III). Histological analysis of the synovial membrane also revealed no significant differences between the two groups (mean score, 12.7 ± 0.15 compared with 13.5 ± 0.11; p = 0.14).

Histological Analysis and Magnetic Resonance Imaging Analysis of Glycosaminoglycans and Collagen

The mean ICRS histological score for the defects treated with bone marrow concentrate was significantly better than that for the microfracture-treated defects (11.1 ± 1.6 compared with 6.4 ± 1.2; p = 0.02). In the bone marrow concentrate group, the proteoglycan staining was primarily located in the deeper layers of the repair tissue with less intense staining at the interface between the repair and surrounding host cartilage (Fig. 4, A, B, a, and b). The superficial layers of the repair tissue in the defects treated with bone marrow concentrate were also more tangentially arranged than those of the repair tissue in the microfracture group (Fig. 4, B and b). In contrast, there was negligible proteoglycan staining throughout the repair tissue in the microfracture group. Safranin O and fast green staining also revealed increased proteoglycan content in the repair tissue in the bone marrow concentrate group compared with that in the microfracture group (Fig. 5, A and B). Quantitative T1rho mapping supported the histological observations by showing significantly increased glycosaminoglycan content in both the superficial and the deep zone within the central and peripheral regions of the repair tissue in the bone marrow concentrate group and in the deep zone of the interface between the repair and host cartilage in that group as compared with the values in the microfracture-treated, control limbs (Table IV and Fig. 5, C and D).
Type-II collagen immunoreaction in the repair tissue was also greater in the bone marrow concentrate group than it was in the microfracture group (Fig. 5, E and F). In defects treated with bone marrow concentrate, the bottom 50% or more of the repair tissue was positive for type-II collagen whereas, in the microfracture-treated defects, only the very lowest layer was immunoreactive. Quantitative T2 mapping indicated improved collagen orientation in the superficial and deep zones.
within the central, peripheral, and interface regions of bone marrow concentrate repair tissues compared with that in the microfracture-treated defects (Table IV and Fig. 5, G and H).

Discussion

In this study, the addition of bone marrow concentrate resulted in significantly improved cartilage repair compared with that following microfracture; this was demonstrated with use of both short-term arthroscopic assessment and longer-term macroscopic, histological, and quantitative magnetic resonance imaging analyses. The differences between the bone marrow concentrate and microfracture groups observed arthroscopically at twelve weeks persisted at the eight-month evaluation. In particular, the repair tissue in the defects treated with bone marrow concentrate was much better integrated into the surrounding normal cartilage, the tissue was thicker, and the tissue had a smoother surface. A consistent deficiency in the repair tissue was noted in the proximal-medial aspect of the microfracture-treated defects. In large (15-mm-diameter) cartilage defects in the lateral trochlear ridge of the femur, spontaneous healing is more apparent distally than it is proximally", so it was not surprising to find that the more proximal aspect of the defect was filled with less repair tissue on the microfracture-treated side. Of note is the fact that this topographical discrepancy in the extent of repair was not apparent in the bone marrow concentrate-treated defects, in which repair was consistent throughout.

The subchondral bone on the defects treated with bone marrow concentrate was subjected to microfracture prior to bone marrow concentrate grafting. The purpose of the microfracture prior to the treatment with the bone marrow concentrate was to produce roughened areas for the base of the bone marrow concentrate graft to increase graft security. Microfracture was performed under helium arthroscopy, and the subchondral bed was dried prior to implantation of the bone marrow concentrate, so it is unlikely that bleeding from the microfracture holes appreciably contributed to the composition of the bone marrow concentrate clot. Long-term consequences of microfracture and other marrow-stimulation techniques, such as an increased rate of failure of subsequent autologous chondrocyte implantation, have been reported, and alternative methods to enhance the security of the bone marrow concentrate clot should be considered. The long-term durability of the results of microfracture has been questioned, but it was chosen as the comparison group since it is considered by many as the first-line treatment for cartilage defects and because microfracture was performed prior to implantation of the bone marrow concentrate.

For this equine model of an extensive cartilage defect, eight months appears to be an adequate duration of follow-up to allow maturation or deterioration of early repair tissue and to permit evaluation of cartilage repair. In the present study, bone marrow concentrate grafting resulted in an improved arthroscopic appearance of the repair tissue at three
months, and the repair tissue remained significantly improved at eight months. However, longer-term data and an evaluation of the return to athletic performance would be required to determine the ultimate durability of the repair tissue following treatment with bone marrow concentrate. In this study, the acute cartilage defects were made in normal joints, so the investigation did not provide information regarding the ability of bone marrow concentrate grafting to result in resolution of clinical symptoms.

Cytological analyses of the bone marrow concentrate suggested that centrifugation of bone marrow aspirate results in significant concentration of platelets and white blood cells and a decrease in red blood cells. Although growth factors were not quantified in this study, there is a strong positive correlation between platelets and anabolic growth factors such as PDGF and TGF-β in equine platelet-rich plasma. Flow cytometry suggests that there are cells that display cell surface markers consistent with mesenchymal stem cells, but the exact quantity of stem cells cannot be measured with these methods since there is no cell-surface-marker profile that is specific for bone marrow-derived stem cells. Furthermore, recent studies suggest that cell surface markers on nucleated cells in fresh bone marrow aspirate and bone marrow concentrate differ from those on cultured cells, leading to further difficulties with attempts to quantify stem cells in a suspension. It would be interesting to quantify the exact number of stem cells in the bone marrow concentrate in order to determine if stem-cell quantity was related to the quality of the repair tissue since the role of stem cells in tissue regeneration remains unclear. In addition to stem cells and growth factors released from platelets, the presence of a three-dimensional structural support for the graft and the surrounding host cartilage likely contributed to the improved repair in the defects treated with bone marrow concentrate. Although understanding the independent contributions of stem cells, growth factors, or scaffolds to new cartilage formation was not an objective of the present study, their combination in a one-step, autogenous, arthroscopically applied method resulted in enhanced cartilage regeneration.

The use of 3-T magnetic resonance mapping in this study provided quantitative validation of macroscopic and histological scores. The immunohistochemistry results indicated increased type-II collagen in the repair tissue in the bone marrow concentrate group, and magnetic resonance T2 mapping revealed that the collagen orientation in the repair tissue in that group more closely approximated normal cartilage than did the repair tissue found in the microfracture-treated defects. Similarly, histological analysis indicated a significant increase in matrix glycosaminoglycan, which was verified through magnetic resonance T1p mapping. Together, these results indicate that bone marrow concentrate results in significant improvements in both biochemical and structural components of the cartilage repair matrix. Clinical studies are needed to determine the ability of bone marrow concentrate grafting to relieve clinical symptoms and to determine the long-term durability of the repair tissue that is formed.

References

